1. Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., Keutzer, K., et al. (2006). The landscape of parallel computing research: A view from Berkeley. EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2006-183.
2. Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified data processing on large clusters. In 6th symp. on OSDI (pp. 137–150).
3. Yeung, J. H., Tsang, C., Tsoi, K., Kwan, B. S., Cheung, C. C., Chan, A. P., et al. (2008). Map-reduce as a programming model for custom computing machines. In Proc. FCCM (pp. 149–159).
4. Hall, M. W., Anderson, J. M., Amarasinghe, S. P., Murphy, B. R., Liao, S.-W., Bugnion, E., et al. (1996). Maximizing multiprocessor performance with the SUIF compiler. IEEE Computer, 29(12), 84–89.
5. Liu, Q., Todman, T., Luk, W., & Constantinides, G. A. (2009). Automatic optimisation of mapreduce designs by geometric programming. In Proc. int. conf. on FPT, Sydney, Australia (pp. 215–222).