Efficient Reconfigurable Mixed Precision $$\ell _1$$ Solver for Compressive Depth Reconstruction

Author:

Wu YunORCID,Wallace Andrew M.,Mota João F.C.,Aßmann Andreas,Stewart Brian

Abstract

AbstractRapid reconstruction of depth images from sparsely sampled data is important for many applications in machine perception, including robot or vehicle assistance or autonomy. Approximate computing techniques have been widely adopted to reduce resource consumption and increase efficiency in energy and resource constrained systems, especially targeted at FPGA and solid state implementation. Whereas previous work has focused on approximate, but static, representation of data in LiDAR systems, in this paper we show how the flexibility of an arbitrary precision accelerator with fine-grain tuning allows a better trade-off between algorithmic performance and implementation efficiency. A mixed precision framework of $$\ell _1$$ 1 solvers is presented, with compact ADMM and PGD, for the lasso problem, enabling compressive depth reconstruction by varying the precision scaling in single bit granularity during the iterative optimization process. Implementing mixed precision $$\ell _1$$ 1 solvers on an FPGA with a pipelined architecture for depth image reconstruction across various sensing scenarios, over 74% savings in hardware resources and 60% in power are achieved with only minor reductions in reconstructed depth image quality when compared to single float precision, while over 10% saving in hardware resources and power is achieved compared to relative consistently reduced precision solutions.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Modeling and Simulation,Information Systems,Signal Processing,Theoretical Computer Science,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3