1. Arias, P., Randall, G., & Sapiro, G. (2007). Connecting the out-of-sample and pre-image problems in kernel methods. In IEEE computer society conference on computer vision and pattern recognition (pp. 1–8). Minneapolis, MN.
2. Bakir, G. H., Weston, J., & Schölkopf, B. (2004). Learning to find pre-images. In S. L. Thrun, & B. Schölkopf (Eds.), Advances in neural information processing systems (Vol. 16, pp. 449–456). Cambridge: MIT.
3. Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121–167.
4. Dambreville, S., Rathi, Y., & Tannenbaum, A. (2006). Statistical shape analysis using kernel PCA. In IS&T/SPIE symposium on electrical imaging.
5. Friedman, J. H. (2008). Fast sparse regression and classification. Tech. rep., Department of Statistics, Stanford University.