Efficient Hardware Architectures for 1D- and MD-LSTM Networks

Author:

Rybalkin VladimirORCID,Sudarshan Chirag,Weis Christian,Lappas Jan,Wehn Norbert,Cheng Li

Abstract

AbstractRecurrent Neural Networks, in particular One-dimensional and Multidimensional Long Short-Term Memory (1D-LSTM and MD-LSTM) have achieved state-of-the-art classification accuracy in many applications such as machine translation, image caption generation, handwritten text recognition, medical imaging and many more. However, high classification accuracy comes at high compute, storage, and memory bandwidth requirements, which make their deployment challenging, especially for energy-constrained platforms such as portable devices. In comparison to CNNs, not so many investigations exist on efficient hardware implementations for 1D-LSTM especially under energy constraints, and there is no research publication on hardware architecture for MD-LSTM. In this article, we present two novel architectures for LSTM inference: a hardware architecture for MD-LSTM, and a DRAM-based Processing-in-Memory (DRAM-PIM) hardware architecture for 1D-LSTM. We present for the first time a hardware architecture for MD-LSTM, and show a trade-off analysis for accuracy and hardware cost for various precisions. We implement the new architecture as an FPGA-based accelerator that outperforms NVIDIA K80 GPU implementation in terms of runtime by up to 84× and energy efficiency by up to 1238× for a challenging dataset for historical document image binarization from DIBCO 2017 contest, and a well known MNIST dataset for handwritten digits recognition. Our accelerator demonstrates highest accuracy and comparable throughput in comparison to state-of-the-art FPGA-based implementations of multilayer perceptron for MNIST dataset. Furthermore, we present a new DRAM-PIM architecture for 1D-LSTM targeting energy efficient compute platforms such as portable devices. The DRAM-PIM architecture integrates the computation units in a close proximity to the DRAM cells in order to maximize the data parallelism and energy efficiency. The proposed DRAM-PIM design is 16.19 × more energy efficient as compared to FPGA implementation. The total chip area overhead of this design is 18 % compared to a commodity 8 Gb DRAM chip. Our experiments show that the DRAM-PIM implementation delivers a throughput of 1309.16 GOp/s for an optical character recognition application.

Funder

H2020 Future and Emerging Technologies

Stiftung Rheinland-Pfalz für Innovation

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Modelling and Simulation,Information Systems,Signal Processing,Theoretical Computer Science,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3