Hardware Implementation of a Fixed-Point Decoder for Low-Density Lattice Codes

Author:

Srivastava RachnaORCID,Gaudet Vincent C.ORCID,Mitran PatrickORCID

Abstract

AbstractThis paper describes a field-programmable gate array (FPGA) implementation of a fixed-point low-density lattice code (LDLC) decoder where the Gaussian mixture messages that are exchanged during the iterative decoding process are approximated to a single Gaussian. A detailed quantization study is first performed to find the minimum number of bits required for the fixed-point decoder to attain a frame error rate (FER) performance similar to floating-point. Then efficient numerical methods are devised to approximate the required non-linear functions. Finally, the paper presents a comparison of the performance of the different decoder architectures as well as a detailed analysis of the resource requirements and throughput trade-offs of the primary design blocks for the different architectures. A novel pipelined LDLC decoder architecture is proposed where resource re-utilization along with pipelining allows for a parallelism equivalent to 50 variable nodes on the target FPGA device. The pipelined architecture attains a throughput of 10.5 Msymbols/sec at a distance of 5 dB from capacity which is a 1.8$$\times$$ × improvement in throughput compared to an implementation with 20 parallel variable nodes without pipelining. This implementation also achieves 24$$\times$$ × improvement in throughput over a baseline serial decoder.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Intel Corporation

CMC Microsystems

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Modeling and Simulation,Information Systems,Signal Processing,Theoretical Computer Science,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3