An Adaptable and Scalable Generator of Distributed Massive MIMO Baseband Processing Systems

Author:

Dai YueORCID,Rasekh Maryam Eslami,Mirfarshbafan Seyed Hadi,Liew Harrison,Gallyas-Sanhueza Alexandra,Dunn James,Madhow Upamanyu,Studer Christoph,Nikolić Borivoje

Abstract

AbstractThis paper presents an algorithm-adaptable, scalable, and platform-portable generator for massive multiple-input multiple-output (MIMO) baseband processing systems. This generator is written in Chisel hardware construction language, and produces instances that implement distributed massive MIMO base station (BS) processing, including channel estimation and beamforming. The generator can be reused for different MIMO systems and hardware datapath designs by changing the parameters. The generator is paired with a Python-based system simulator, which incorporated together can emulate a system testing various baseband signal processing algorithms. The field programmable gate array (FPGA) emulation is performed with generated instances using various parameter values. To demonstrate the algorithmic adaptability, a Golay-sequence-based channel estimation method, a beamspace calibration method, and a channel denoising algorithm are evaluated across a range of channel models. The performance of the generator, necessity of the algorithmic adaptability, and ease of hardware generation are evaluated and discussed. The emulated register-transfer level (RTL) implementation with different system parameters shows that with beamspace methods, the demodulation error vector magnitude is improved by up to 29.8%.

Funder

Semiconductor Research Corporation

Publisher

Springer Science and Business Media LLC

Subject

Hardware and Architecture,Modeling and Simulation,Information Systems,Signal Processing,Theoretical Computer Science,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3