Fate of micronuclei and micronucleated cells after treatment of HeLa cells with different genotoxic agents

Author:

Reimann Hauke,Stopper Helga,Hintzsche HenningORCID

Abstract

AbstractAlthough micronuclei are well-known biomarkers of genotoxic damage, the biological consequences of micronucleus induction are only poorly understood. To further elucidate these consequences, HeLa cells stably expressing histone 2B coupled with green fluorescent protein were used for long-term live cell imaging to investigate the fate of micronuclei and micronucleated cells after treatment of cells with various genotoxic agents (doxorubicin (20, 30 and nM), tert-butyl hydroperoxide (tBHP, 50, 100 and 150 µM), radiation (0.5, 1 and 2 Gy), methyl methanesulfonate (MMS, 20, 25 and 30 µg/ml) and vinblastine (1, 2 and 3 nM)). Most micronuclei persist for multiple cell cycles or reincorporate while micronucleated cells were more prone to cell death, senescence and fatal mitotic errors compared to non-micronucleated cells, which is consistent with previous studies using etoposide. No clear substance-related effects on the fate of micronuclei and micronucleated cells were observed. To further investigate the fate of micronuclei, extrusion of micronuclei was studied with treatments reported as inducing the extrusion of micronuclei. Since extrusion was not observed in HeLa cells, the relevance of extrusion of micronuclei remains unclear. In addition, degradation of micronuclei was analysed via immunostaining of γH2AX, which demonstrated a high level of DNA damage in micronuclei compared to the main nuclei. Furthermore, transduction with two reporter genes (LC3B-dsRed and LaminB1-dsRed) was conducted followed by long-term live cell imaging. While autophagy marker LC3B was not associated with micronuclei, Lamin B1 was found in approximately 50% of all micronuclei. While degradation of micronuclei was not observed to be a frequent fate of micronuclei, the results show impaired stability of DNA and micronuclear envelope indicating rupture of micronuclei as a pre-step to chromothripsis.

Funder

Deutsche Forschungsgemeinschaft

Rheinische Friedrich-Wilhelms-Universität Bonn

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3