Sulfur mustard single-dose exposure triggers senescence in primary human dermal fibroblasts

Author:

Horn Gabriele,Schäfers Catherine,Thiermann Horst,Völkl Sandra,Schmidt Annette,Rothmiller SimoneORCID

Abstract

AbstractChronic wounds, skin blisters, and ulcers are the result of skin exposure to the alkylating agent sulfur mustard (SM). One potential pathomechanism is senescence, which causes permanent growth arrest with a pro-inflammatory environment and may be associated with a chronic wound healing disorder. SM is known to induce chronic senescence in human mesenchymal stem cells which are subsequently unable to fulfill their regenerative function in the wound healing process. As dermal fibroblasts are crucial for cutaneous wound healing by being responsible for granulation tissue formation and synthesis of the extracellular matrix, SM exposure might also impair their function in a similar way. This study, therefore, investigated the SM sensitivity of primary human dermal fibroblasts (HDF) by determining the dose–response curve. Non-lethal concentrations LC1 (3 µM) to LC25 (65 µM) were used to examine the induction of senescence. HDF were exposed once to 3 µM, 13 µM, 24 µM, 40 µM or 65 μM SM, and were then cultured for 31 days. Changes in morphology as well as at the genetic and protein level were investigated. For the first time, HDF were shown to undergo senescence in a time- and concentration-dependent manner after SM exposure. They developed a characteristic senescence phenotype and expressed various senescence markers. Proinflammatory cytokines and chemokines were significantly altered in SM-exposed HDF as part of a senescence-associated secretory phenotype. The senescent fibroblasts can thus be considered a contributor to the SM-induced chronic wound healing disorder and might serve as a new therapeutic target in the future.

Funder

Sanitätsakademie der Bundeswehr

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3