How to avoid misinterpretation of dual reporter gene assay data affected by cell damage

Author:

Nilles Julie,Weiss Johanna,Haefeli Walter E.,Ruez Stephanie,Theile DirkORCID

Abstract

AbstractThe activity of nuclear receptors (e.g., pregnane x receptor, PXR) can be assessed by luminescence-based dual reporter gene assays. Under most conditions, receptor-activated firefly luminescence is normalized to Renilla luminescence, which is triggered by a constitutively active promoter. Simultaneous damage to the cells can however disrupt these signals and thus impair the interpretation of the data. Consequently, this study addressed three important aspects: First, idealized models were described, each highlighting crucial characteristics and important pitfalls of dual PXR reporter gene assays used to evaluate PXR activation or inhibition. Second, these models were supported by experimental data obtained with a strong PXR activator (rifampicin) with low cytotoxicity, a PXR activator with high cytotoxicity (dovitinib), a proposed PXR inhibitor that reportedly has no toxic effects (triptolide), and a cytotoxic control (oxaliplatin). Data were evaluated for relative PXR activity data, individual firefly or Renilla luminescence, and anti-proliferative effects of the compounds (assessed by crystal violet staining). Finally, a step-by-step guide is proposed to avoid misleading set-up of the assay or misinterpretation of the data obtained. Key considerations here include (1) omission of drug concentrations beyond 10–20% proliferation inhibition; (2) observation of Renilla luminescence, because this tends to indicate ‘false PXR activation’ when it inexplicably decreases; (3) parallel decrease of relative PXR activity and proliferation below baseline levels in conjunction with a sharp decrease in Renilla luminescence indicates ‘false PXR antagonism’; (4) non-sigmoidal relationships suggest the absence of concentration dependency.

Funder

Medizinische Fakultät Heidelberg der Universität Heidelberg

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3