Simulations of radioiodine exposure and protective thyroid blocking in a new biokinetic model of the mother–fetus unit at different pregnancy ages

Author:

Rump A.ORCID,Hermann C.,Lamkowski A.,Abend M.,Port M.

Abstract

AbstractIn the case of nuclear incidents, radioiodine may be released. After incorporation, it accumulates in the thyroid and enhances the risk of thyroidal dysfunctions and cancer occurrence by internal irradiation. Pregnant women and children are particularly vulnerable. Therefore, thyroidal protection by administering a large dose of stable (non-radioactive) iodine, blocking radioiodide uptake into the gland, is essential in these subpopulations. However, a quantitative estimation of the protection conferred to the maternal and fetal thyroids in the different stages of pregnancy is difficult. We departed from an established biokinetic model for radioiodine in pregnancy using first-order kinetics. As the uptake of iodide into the thyroid and several other tissues is mediated by a saturable active transport, we integrated an uptake mechanism described by a Michaelis–Menten kinetic. This permits simulating the competition between stable and radioactive iodide at the membrane carrier site, one of the protective mechanisms. The Wollf–Chaikoff effect, as the other protective mechanism, was simulated by adding a total net uptake block for iodide into the thyroid, becoming active when the gland is saturated with iodine. The model’s validity was confirmed by comparing predicted values with results from other models and sparse empirical data. According to our model, in the case of radioiodine exposure without thyroid blocking, the thyroid equivalent dose in the maternal gland increases about 45% within the first weeks of pregnancy to remain in the same range until term. Beginning in the 12th pregnancy week, the equivalent dose in the fetal thyroid disproportionately increases over time and amounts to three times the dose of the maternal gland at term. The maternal and fetal glands’ protection increases concomitantly with the amount of stable iodine administered to the mother simultaneously with acute radioiodine exposure. The dose–effect curves reflecting the combined thyroidal protection by the competition at the membrane carrier site and the Wolff–Chaikoff effect in the mother are characterized by a mean effective dose (ED50) of roughly 1.5 mg all over pregnancy. In the case of the fetal thyroid, the mean effective doses for thyroid blocking, taking into account only the competition at the carrier site are numerically lower than in the mother. Taking into account additionally the Wolff–Chaikoff effect, the dose–effect curves for thyroidal protection in the fetus show a shift to the left over time, with a mean effective dose of 12.9 mg in the 12th week of pregnancy decreasing to 0.5 mg at term. In any case, according to our model, the usually recommended dose of 100 mg stable iodine given at the time of acute radioiodine exposure confers a very high level of thyroidal protection to the maternal and fetal glands over pregnancy. For ethical reasons, the possibilities of experimental studies on thyroid blocking in pregnant women are extremely limited. Furthermore, results from animal studies are associated with the uncertainties related to the translation of the data to humans. Thus model-based simulations may be a valuable tool for better insight into the efficacy of thyroidal protection and improve preparedness planning for uncommon nuclear or radiological emergencies.

Funder

Sanitätsakademie der Bundeswehr

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Reference89 articles.

1. Aboul-Khair SA, Crooks J, Turnbull AC, Hytten FE (1964) The physiological changes in thyroid function during pregnancy. Clin Sci 27:195–207

2. Aboul-Khair SA, Buchanan TJ, Crooks J, Turnbull AC (1966) Structural and functional development of the human foetal thyroid. Clin Sci 31(3):415–424

3. Adams CA, Bonnell JA (1962) Administration of stable odide as a means of reducing thyroid irradiation resulting from inhalation of radioactive iodine. Health Phys 7:127–149

4. Agency for Toxic Substances and Disease Registry (ATDSR)(2004) Toxicological profile for iodine. US Department of Health and Human Services, Public Health Service, Atlanta

5. Autorité de Sureté Nucléaire (ASN)(2008) Guide national. Intervention médicale en cas d´évènement nucléaire ou radiologique. Version V 3.6.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3