Carbon nanotubes conjugated with cisplatin activate different apoptosis signaling pathways in 2D and 3D-spheroid triple-negative breast cancer cell cultures: a comparative study

Author:

Badea Madalina Andreea,Balas MihaelaORCID,Ionita Daniela,Dinischiotu Anca

Abstract

AbstractThe type of experimental model for the in vitro testing of drug formulations efficiency represents an important tool in cancer biology, with great attention being granted to three-dimensional (3D) cultures as these offer a closer approximation of the clinical sensitivity of drugs. In this study, the effects induced by carboxyl-functionalized single-walled carbon nanotubes complexed with cisplatin (SWCNT–COOH–CDDP) and free components (SWCNT–COOH and CDDP) were compared between conventional 2D- and 3D-spheroid cultures of human breast cancer cells. The 2D and 3D breast cancer cultures were exposed to various doses of SWCNT–COOH (0.25–2 μg/mL), CDDP (0.158–1.26 μg/mL) and the same doses of SWNCT–COOH–CDDP complex for 24 and 48 h. The anti-tumor activity, including modulation of cell viability, oxidative stress, proliferation, apoptosis, and invasion potential, was explored by spectrophotometric and fluorometric methods, immunoblotting, optical and fluorescence microscopy. The SWCNT–COOH–CDDP complex proved to have high anti-cancer efficiency on 2D and 3D cultures by inhibiting cell proliferation and activating cell death. A dose of 0.632 μg/mL complex triggered different pathways of apoptosis in 2D and 3D cultures, by intrinsic, extrinsic, and reticulum endoplasmic pathways. Overall, the 2D cultures showed higher susceptibility to the action of complex compared to 3D cultures and SWCNT–COOH–CDDP proved enhanced anti-tumoral activity compared to free CDDP.

Funder

Romanian National Authority for Scientific Research and Innovation, The Executive Agency for Higher Education, Research, Development and Innovation Funding

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3