Simultaneous multi-targeted forensic toxicological screening in biological matrices by MRM-IDA-EPI mode

Author:

Franzin MartinaORCID,Di Lenardo Rebecca,Ruoso Rachele,Dossetto Paolo,D’Errico Stefano,Addobbati Riccardo

Abstract

AbstractThe toxicologist ascertains drug assumptions in case of paediatric intoxications and death for overdose. The analytical approach consists of initially screening and consequently confirming drug positivity. We developed a toxicological screening method and validated its use comparing the results with a LC–MS/MS analysis. The method identifies 751 drugs and metabolites (704 in positive and 47 in negative mode). Chromatographic separation was achieved eluting mobile phase A (10 mM ammonium formate) and B (0.05% formic acid in methanol) in gradient on Kinetex Phenyl-Hexyl (50 × 4.6 mm, 2.6 μm) with 0.7 mL/min flow rate for 11 min. Multiple Reaction Monitoring (MRM) was adopted as survey scan and, after an Information-Dependent Analysis (IDA) (threshold of 30,000 for positive and 1000 cps for negative mode), the Enhanced Product Ion (scan range: 50–700 amu) was triggered. The MS/MS spectrum generated was compared with one of the libraries for identification. Data processing was optimised through creation of rules. Sample preparation, mainly consisting of deproteinization and enzymatic hydrolysis, was set up for different matrices (blood, urine, vitreous humor, synovial fluid, cadaveric tissues and larvae). Cut-off for most analytes resulted in the lowest concentration tested. When the results from the screening and LC–MS/MS analysis were compared, an optimal percentage of agreement (100%) was assessed for all matrices. Method applicability was evaluated on real paediatric intoxications and forensic cases. In conclusion, we proposed a multi-targeted, fast, sensitive and specific MRM-IDA-EPI screening having an extensive use in different toxicological fields.

Funder

Italian Ministry of Health, through the contribution given to the Institute for Maternal and Child Health IRCCS “Burlo Garofolo”

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3