Abstract
AbstractExposure to toxic elements in drinking water, such as arsenic (As) and fluoride (F), starts at gestation and has been associated with memory and learning deficits in children. Studies in which rodents underwent mechanistic single exposure to As or F showed that the neurotoxic effects are associated with their capacity to disrupt redox balance, mainly by diminishing glutathione (GSH) levels, altering glutamate disposal, and altering glutamate receptor expression, which disrupts synaptic transmission. Elevated levels of As and F are common in groundwater worldwide. To explore the neurotoxicity of chronic exposure to As and F in drinking water, pregnant CD-1 mice were exposed to 2 mg/L As (sodium arsenite) and 25 mg/L F (sodium fluoride) alone or in combination. The male litter continued to receive exposure up to 30 or 90 days after birth. The effects of chronic exposure on GSH levels, transsulfuration pathway enzymatic activity, expression of cysteine/cystine transporters, glutamate transporters, and ionotropic glutamate receptor subunits as well as behavioral performance in the object recognition memory task were assessed. Combined exposure resulted in a significant reduction in GSH levels in the cortex and hippocampus at different times, decreased transsulfuration pathway enzyme activity, as well as diminished xCT protein expression. Altered glutamate receptor expression in the cortex and hippocampus and decreased transaminase enzyme activity were observed. These molecular alterations were associated with memory impairment in the object recognition task, which relies on these brain regions.
Funder
Programa Salud y Ambiente
Consejo Nacional de Ciencia y Tecnología
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Toxicology,General Medicine
Reference50 articles.
1. Agalakova NI, Nadei OV (2020) Inorganic fluoride and functions of brain. Crit Rev Toxicol 50(1):28–46. https://doi.org/10.1080/10408444.2020.1722061
2. Alfaro de la Torre MC, Ortiz Pérez MD, Alarcón MT, Martínez Cruz DA, Ledón JM (2018) Chapter 2. Inventario Nacional de Calidad del Agua. Arsénico y fluoruro en agua: riesgos y perspectivas desde la sociedad civil y la academia en México. p 31–56
3. Al-Khafaji F, Bowron A, Day AP, Scott J, Stansbie D (1998) Stabilization of blood homocysteine by 3-deazaadenosine. Ann Clin Biochem 35(Pt 6):780–782. https://doi.org/10.1177/000456329803500612
4. Andersen JV, Markussen KH, Jakobsen E et al (2021) Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology 196:108719. https://doi.org/10.1016/j.neuropharm.2021.108719
5. Bach ME, Hawkins RD, Osman M, Kandel ER, Mayford M (1995) Impairment of spatial but not contextual memory in CaMKII mutant mice with a selective loss of hippocampal LTP in the range of the theta frequency. Cell 81(6):905–915. https://doi.org/10.1016/0092-8674(95)90010-1
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献