In vitro evaluation of the reductive carbonyl idarubicin metabolism to evaluate inhibitors of the formation of cardiotoxic idarubicinol via carbonyl and aldo–keto reductases

Author:

Bajraktari-Sylejmani Gzona,Oster Julia Sophie,Burhenne Jürgen,Haefeli Walter Emil,Sauter Max,Weiss JohannaORCID

Abstract

AbstractThe most important dose-limiting factor of the anthracycline idarubicin is the high risk of cardiotoxicity, in which the secondary alcohol metabolite idarubicinol plays an important role. It is not yet clear which enzymes are most important for the formation of idarubicinol and which inhibitors might be suitable to suppress this metabolic step and thus would be promising concomitant drugs to reduce idarubicin-associated cardiotoxicity. We, therefore, established and validated a mass spectrometry method for intracellular quantification of idarubicin and idarubicinol and investigated idarubicinol formation in different cell lines and its inhibition by known inhibitors of the aldo–keto reductases AKR1A1, AKR1B1, and AKR1C3 and the carbonyl reductases CBR1/3. The enzyme expression pattern differed among the cell lines with dominant expression of CBR1/3 in HEK293 and MCF-7 and very high expression of AKR1C3 in HepG2 cells. In HEK293 and MCF-7 cells, menadione was the most potent inhibitor (IC50 = 1.6 and 9.8 µM), while in HepG2 cells, ranirestat was most potent (IC50 = 0.4 µM), suggesting that ranirestat is not a selective AKR1B1 inhibitor, but also an AKR1C3 inhibitor. Over-expression of AKR1C3 verified the importance of AKR1C3 for idarubicinol formation and showed that ranirestat is also a potent inhibitor of this enzyme. Taken together, our study underlines the importance of AKR1C3 and CBR1 for the reduction of idarubicin and identifies potent inhibitors of metabolic formation of the cardiotoxic idarubicinol, which should now be tested in vivo to evaluate whether such combinations can increase the cardiac safety of idarubicin therapies while preserving its efficacy.

Funder

Medizinische Fakultät Heidelberg, Universität Heidelberg

Universitätsklinikum Heidelberg

Publisher

Springer Science and Business Media LLC

Reference86 articles.

1. Albermann N, Schmitz-Winnenthal HF, Z’graggen K, Volk C, Hoffmann MM, Haefeli WE, Weiss J (2005) Expression of the drug transporters MDR1/ABCB1, MRP1/ABCC1, MRP2/ABCC2, BCRP/ABCG2, and PXR in peripheral blood mononuclear cells and their relationship with the expression in intestine and liver. Biochem Pharmacol 70:949–958. https://doi.org/10.1016/j.bcp.2005.06.018

2. Anderlini P, Benjamin RS, Wong FC, Kantarjian HM, Andreeff M, Kornblau SM, O’Brien S, Mackay B, Ewe MSR, Pierce SA, Estey EH (1995) Idarubicin cardiotoxicity: a retrospective study in acute myeloid leukemia and myelodysplasia. J Clin Oncol 13:2827–2834. https://doi.org/10.1200/JCO.1995.13.11.2827

3. Arai Y, Endo S, Miyagi N, Abe N, Miura T, Nishinaka T, Terada T, Oyama M, Goda H, El-Kabbani O, Hara A, Matsunaga T, Ikari A (2015) Structure-activity relationship of flavonoids as potent inhibitors of carbonyl reductase 1 (CBR1). Fitoterapia 101:51–56. https://doi.org/10.1016/j.fitote.2014.12.010

4. Armenian SH, Hudson MM, Mulder RL, Chen MH, Constine LS, Dwyer M, Nathan PC, Tissing WJ, Shankar S, Sieswerda E, Skinner R, Steinberger J, van Dalen EC, van der Pal H, Wallace WH, Levitt G, Kremer LC (2015) Recommendations for cardiomyopathy surveillance for survivors of childhood cancer: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol 16:123–136. https://doi.org/10.1016/S1470-2045(14)70409-7

5. Auchus RJ (2004) The backdoor pathway to dihydrotestosterone. Trends Endocrinol Metab 15:432–438. https://doi.org/10.1016/j.tem.2004.09.004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3