The carbon dioxide removal potential of Liquid Air Energy Storage: A high-level technical and economic appraisal

Author:

Lockley Andrew,von Hippel Ted

Abstract

AbstractLiquid Air Energy Storage (LAES) is at pilot scale. Air cooling and liquefaction stores energy; reheating revaporises the air at pressure, powering a turbine or engine (Ameel et al., 2013). Liquefaction requires water & CO2 removal, preventing ice fouling. This paper proposes subsequent geological storage of this CO2 - offering a novel Carbon Dioxide Removal (CDR) by-product, for the energy storage industry. It additionally assesses the scale constraint and economic opportunity offered by implementing this CDR approach. Similarly, established Compressed Air Energy Storage (CAES) uses air compression and subsequent expansion. CAES could also add CO2scrubbing and subsequent storage, at extra cost. CAES stores fewer joules per kilogram of air than LAES - potentially scrubbing more CO2 per joule stored. Operational LAES/CAES technologies cannot offer full-scale CDR this century (Stocker et al., 2014), yet they could offer around 4% of projected CO2 disposals for LAES and < 25% for current-technology CAES. LAES CDR could reach trillion-dollar scale this century (20 billion USD/year, to first order). A larger, less certain commercial CDR opportunity exists for modified conventional CAES, due to additional equipment requirements. CDR may be commercially critical for LAES/CAES usage growth, and the necessary infrastructure may influence plant scaling and placement. A suggested design for low-pressure CAES theoretically offers global-scale CDR potential within a century (ignoring siting constraints) - but this must be costed against competing CDR and energy storage technologies.

Publisher

Springer Science and Business Media LLC

Reference30 articles.

1. Ameel B, T’Joen C, de Kerpel K, de Jaeger P, Huisseune H, van Belleghem M, de Paepe M (2013). Thermodynamic analysis of energy storage with a liquid air Rankine cycle. Applied Thermal Engineering, 52(1): 130–140

2. Carr G (2012). Sunny uplands: Alternative energy will no longer be alternative. The Economist, 21

3. Ding Y, Tong L, Zhang P, Li Y, Radcliffe J, Wang L (2016). Liquid air energy storage. In: Letcher T M, ed. Storing Energy: With Special Reference to Renewable Energy Sources. Holland: Elsevier, 167–181

4. Dorminey B (2014). Underwater compressed air energy storage: Fantasy or reality? Renewable Energy World

5. EIA (2013). EIA projects world energy consumption will increase 56% by 2040. US Energy Information Administration (EIA). Available at: http://eia.gov/todayinenergy/detail.php?id=12251

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3