Traffic state estimation incorporating heterogeneous vehicle composition: A high-dimensional fuzzy model

Author:

Wang Shengyou,Dong Chunjiao,Shao Chunfu,Luo Sida,Zhang Jie,Meng Meng

Abstract

AbstractAccurate traffic state estimations (TSEs) within road networks are crucial for enhancing intelligent transportation systems and developing effective traffic management strategies. Traditional TSE methods often assume homogeneous traffic, where all vehicles are considered identical, which does not accurately reflect the complexities of real traffic conditions that often exhibit heterogeneous characteristics. In this study, we address the limitations of conventional models by introducing a novel TSE model designed for precise estimations of heterogeneous traffic flows. We develop a comprehensive traffic feature index system tailored for heterogeneous traffic that includes four elements: basic traffic parameters, heterogeneous vehicle speeds, heterogeneous vehicle flows, and mixed flow rates. This system aids in capturing the unique traffic characteristics of different vehicle types. Our proposed high-dimensional fuzzy TSE model, termed HiF-TSE, integrates three main processes: feature selection, which eliminates redundant traffic features using Spearman correlation coefficients; dimension reduction, which utilizes the T-distributed stochastic neighbor embedding machine learning algorithm to reduce high-dimensional traffic feature data; and FCM clustering, which applies the fuzzy C-means algorithm to classify the simplified data into distinct clusters. The HiF-TSE model significantly reduces computational demands and enhances efficiency in TSE processing. We validate our model through a real-world case study, demonstrating its ability to adapt to variations in vehicle type compositions within heterogeneous traffic and accurately represent the actual traffic state.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3