The impact of distinct triple-negative breast cancer subtypes on misdiagnosis and diagnostic delay
Author:
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Oncology
Link
http://link.springer.com/content/pdf/10.1007/s10549-019-05298-6.pdf
Reference29 articles.
1. Dent R et al (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13:4429–4434
2. Kaplan HG, Malmgren JA (2008) Impact of triple negative phenotype on breast cancer prognosis. Breast J 14:456–463
3. Li XB et al (2016) Biomarkers predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer. Am J Clin Pathol 145:871–878
4. Masuda H et al (2013) Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res 19:5533–5540
5. Lehmann BD et al (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121:2750–2767
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The application of computer-aided diagnosis in Breast Imaging Reporting and Data System ultrasound training for residents—a randomized controlled study;Translational Cancer Research;2024-04
2. Recent advancements in nanoconstructs for the theranostics applications for triple negative breast cancer;Journal of Drug Delivery Science and Technology;2024-03
3. Prognostic Value of Immunohistochemistry-based Subtyping Before and After Neoadjuvant Chemotherapy in Patients with Triple-negative Breast Cancer;American Journal of Surgical Pathology;2023-10-17
4. Deep Learning Analysis of Histopathology Images for Breast Cancer Detection: A Comparative Study of ResNet and VGG Architectures;2023 18th International Workshop on Semantic and Social Media Adaptation & Personalization (SMAP)18th International Workshop on Semantic and Social Media Adaptation & Personalization (SMAP 2023);2023-09-25
5. BI-RADS-NET-V2: A Composite Multi-Task Neural Network for Computer-Aided Diagnosis of Breast Cancer in Ultrasound Images With Semantic and Quantitative Explanations;IEEE Access;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3