Multiple scales and singular limits of perfect fluids

Author:

Chaudhuri NilasisORCID

Abstract

AbstractIn this article, our goal is to study the singular limits for a scaled barotropic Euler system modeling a rotating, compressible and inviscid fluid, where Mach number $$=\epsilon ^m $$ = ϵ m , Rossby number $$=\epsilon $$ = ϵ and Froude number $$=\epsilon ^n $$ = ϵ n are proportional to a small parameter $$\epsilon \rightarrow 0$$ ϵ 0 . The fluid is confined to an infinite slab, the limit behavior is identified as the incompressible Euler system or a damped incompressible Euler system depending on the relation between m and n. For well-prepared initial data, the convergence is shown on the lifespan time interval of the strong solutions of the target system, whereas a class of generalized dissipative solutions is considered for the primitive system. The technique can be adapted to the compressible Navier–Stokes system in the subcritical range of the adiabatic exponent $$\gamma $$ γ with $$1<\gamma \le \frac{3}{2}$$ 1 < γ 3 2 , where weak solutions are not known to exist.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Mathematics (miscellaneous)

Reference34 articles.

1. A. Abbatiello, E. Feireisl, and A. Novotny, Generalized solutions to models of compressible viscous fluids (2019).

2. J. J. Alibert and G. Bouchitté, Non-uniform integrability and generalized Young measures, J. Convex Anal. 4 (1997), no. 1, 129–147.

3. A. Babin, A. Mahalov, and B. Nicolaenko, Global regularity of 3D rotating Navier–Stokes equations for resonant domains, Indiana Univ. Math. J. 48 (1999), no. 3, 1133–1176.

4. A. Babin, A. Mahalov, and B. Nicolaenko, 3D Navier–Stokes and Euler equations with initial data characterized by uniformly large vorticity, Indiana Univ. Math. J. 50 (2001), no. Special Issue, 1–35. Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000).

5. D. Basarić, Vanishing viscosity limit for the compressible Navier–Stokes system via measure-valued solutions, arXiv e-prints (2019Mar), arXiv:1903.05886.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3