Abstract
AbstractWe consider time-changed Brownian motions on random Koch (pre-fractal and fractal) domains where the time change is given by the inverse to a subordinator. In particular, we study the fractional Cauchy problem with Robin condition on the pre-fractal boundary obtaining asymptotic results for the corresponding fractional diffusions with Robin, Neumann and Dirichlet boundary conditions on the fractal domain.
Funder
Università degli Studi di Roma La Sapienza
Publisher
Springer Science and Business Media LLC
Subject
Mathematics (miscellaneous)
Reference32 articles.
1. M. Allen, L. Caffarelli, A. Vasseur, A parabolic problem with a fractional time derivative. Arch. Ration. Mech. Anal. 221 (2016), no. 2, 603-630.
2. M. T. Barlow and B. M. Hambly, Transition density estimates for Brownian motion on scale irregular Sierpinski gasket, Ann. Inst. H. Poincaré Probab. Statist., 33 (1997), 531–557.
3. E. Bazhlekova, The abstract Cauchy problem for the fractional evolution equation, Fract. Calc. Appl. Anal., 1 (1998), 255-270.
4. L. Beghin, On fractional tempered stable processes and their governing differential equations, Journal of Computational Physics, 293 (2015), 29-39.
5. J. Bertoin, Subordinators: Examples and Applications. In: Bernard P. (eds) Lectures on Probability Theory and Statistics. ,. Berlin, 1999.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献