Abstract
AbstractWe consider incompressible Navier–Stokes equations in a bounded 2D domain, complete with the so-called dynamic slip boundary conditions. Assuming that the data are regular, we show that weak solutions are strong. As an application, we provide an explicit upper bound of the fractal dimension of the global attractor in terms of the physical parameters. These estimates comply with analogous results in the case of Dirichlet boundary condition.
Funder
Grantová Agentura České Republiky
Publisher
Springer Science and Business Media LLC