Abstract
AbstractWe study the Cauchy problem for the Schrödinger-improved Boussinesq system in a two-dimensional domain. Under natural assumptions on the data without smallness, we prove the existence and uniqueness of global strong solutions. Moreover, we consider the vanishing “improvement” limit of global solutions as the coefficient of the linear term of the highest order in the equation of ion sound waves tends to zero. Under the same smallness assumption on the data as in the Zakharov case, solutions in the vanishing “improvement” limit are shown to satisfy the Zakharov system.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Mathematics (miscellaneous)
Reference50 articles.
1. H. Added, S. Added, Existence globale de solutions fortes pour les équations de la turbulence de Langmuir en demension 2, C. R. Acad. Sc. Paris. T. 299. Série I, (12) (1984) 551-554.
2. H. Added, S. Added, Equations of Langmuir turbulence and nonlinear Schrödinger equation : smoothness and approximation, J. Funct. Anal. 79 (1) (1988) 183-210.
3. T. Akahori, Well-posedness for the Schrödinger-improved Boussinesq system and related bilinear estimates, Funkcial. Ekvac., 50 (3) (2007) 469-489.
4. I. Bejenaru, S. Herr, J. Holmer, D. Tataru, On the 2D Zakharov system with $$L^2$$-Schrödinger data, Nonlinearity 22 (5) (2009) 1063-1089.
5. J. Bourgain, J. Colliander, On wellposedness of the Zakharov system, Int. Math. Res. Not. (11) (1996).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献