Well-posedness of the compressible Navier–Stokes–Poisson system in the critical Besov spaces
Author:
Publisher
Springer Science and Business Media LLC
Subject
Mathematics (miscellaneous)
Link
http://link.springer.com/article/10.1007/s00028-016-0334-6/fulltext.html
Reference28 articles.
1. Bahouri, H., Chemin, J.-Y., and Danchin, R., Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343, Springer, Heidelberg, 2011.
2. Bella P.: Long time behavior of weak solutions to Navier–Stokes–Poisson system. J. Math. Fluid Mech. 14(no. 2), 279–294 (2012)
3. Charve F., Danchin R.: A global existence result for the compressible Navier- Stokes equations in the critical Lp framework. Arch. Ration. Mech. Anal. 198(no. 1), 233–271 (2010)
4. Chandrasekhar, S., An introduction to the study of stellar structure, Dover Publications Inc., New York, N. Y., 1957.
5. Chemin J.-Y., Lerner N.: Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes. J. Differential Equations 121(no. 2), 314–328 (1995)
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Global existence and the algebraic decay rate of the solution for the quantum Navier–Stokes–Poisson equations in R3;Journal of Mathematical Physics;2022-09-01
2. On the cauchy problem of 3D compressible, viscous, heat-conductive navier-stokes-Poisson equations subject to large and non-flat doping profile;Calculus of Variations and Partial Differential Equations;2022-06-22
3. Remark on the optimal time‐decay estimates for the compressible Navier‐Stokes‐Poisson equations without additional smallness assumptions;Mathematical Methods in the Applied Sciences;2021-05-24
4. Global well-posedness of strong solutions with large oscillations and vacuum to the compressible Navier-Stokes-Poisson equations subject to large and non-flat doping profile;Journal of Differential Equations;2020-11
5. The combined quasineutral and low Mach number limit of the Navier–Stokes–Poisson system;Zeitschrift für angewandte Mathematik und Physik;2019-01-17
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3