Asymptotic behavior of solutions to the extension problem for the fractional Laplacian on noncompact symmetric spaces

Author:

Papageorgiou EffieORCID

Abstract

AbstractThis work deals with the extension problem for the fractional Laplacian on Riemannian symmetric spaces G/K of noncompact type and of general rank, which gives rise to a family of convolution operators, including the Poisson operator. More precisely, motivated by Euclidean results for the Poisson semigroup, we study the long-time asymptotic behavior of solutions to the extension problem for $$L^1$$ L 1 initial data. In the case of the Laplace–Beltrami operator, we show that if the initial data are bi-K-invariant, then the solution to the extension problem behaves asymptotically as the mass times the fundamental solution, but this convergence may break down in the non-bi-K-invariant case. In the second part, we investigate the long-time asymptotic behavior of the extension problem associated with the so-called distinguished Laplacian on G/K. In this case, we observe phenomena which are similar to the Euclidean setting for the Poisson semigroup, such as $$L^1$$ L 1 asymptotic convergence without the assumption of bi-K-invariance.

Funder

DFG

Universität Paderborn

Publisher

Springer Science and Business Media LLC

Reference31 articles.

1. L. Abadias and E. Alvarez, Asymptotic behavior for the discrete in time heat equation, Mathematics 10 (2022).

2. L. Abadias, J. González-Camus, P.J. Miana, and J.C. Pozo, Large time behaviour for the heat equation on $${\mathbb{Z}}$$, moments and decay rates, J. Math. Anal. Appl. 500 (2021).

3. I. Alvarez-Romero, B. Barrios, and J.J. Betancor, Pointwise convergence of the heat and subordinates of the heat semigroups associated with the Laplace operator on homogeneous trees and two weighted $$L^p$$ maximal inequalities (2022), arXiv:2202.11210.

4. J.-P. Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J. 64 (1992), 257–297.

5. J.-P. Anker and L. Ji, Heat kernel and Green function estimates on noncompact symmetric spaces, Geom. Funct. Anal. 9 (1999), 1035–1091.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3