Abstract
AbstractWe study local boundedness and Hölder continuity of a parabolic equation involving the fractional p-Laplacian of order s, with $$0<s<1$$
0
<
s
<
1
, $$2\le p < \infty $$
2
≤
p
<
∞
, with a general right-hand side. We focus on obtaining precise Hölder continuity estimates. The proof is based on a perturbative argument using the already known Hölder continuity estimate for solutions to the equation with zero right-hand side.
Funder
Vetenskapsrådet
Royal Institute of Technology
Publisher
Springer Science and Business Media LLC
Reference51 articles.
1. B. Abdellaoui, A. Attar, R. Bentifour, I. Peral, On fractional$$p$$-Laplacian parabolic problem with general data, Ann. Mat. Pura Appl., 197 (2018), 329–356.
2. K. Adimurthi, H. Prasad, V. Tewary, Local Hölder regularity for nonlocal parabolic p-Laplace equations, arXiv:2205.09695, (2022), 1–31.
3. F. Anceschi, M. Piccinini, Boundedness estimates for nonlinear nonlocal kinetic Kolmogorov-Fokker-Planck equations, arXiv:2301.06334, (2023), 1–26.
4. F. Andreu-Vaillo, J. Mazón, J.D. Rossi, J.J. Toledo-Melero, Nonlocal diffusion problems Mathematical Surveys and Monographs, 165. American Mathematical Society, Providence, RI; Real Sociedad Matematica Espanñla, Madrid, (2010).
5. D.G. Aronson, J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal. 25 (1967), 81–122.