Abstract
AbstractIn this paper, we analyse the existence and non-existence of non-negative solutions to a non-local parabolic equation with a Hardy–Leray-type potential. More precisely, we consider the problem $$\begin{aligned} {\left\{ \begin{array}{ll} (w_t-\Delta w)^s=\frac{\lambda }{|x|^{2s}} w+w^p +f, &{}\quad \text {in }\mathbb {R}^N\times (0,+\infty ),\\ w(x,t)=0, &{}\quad \text {in }\mathbb {R}^N\times (-\infty ,0], \end{array}\right. } \end{aligned}$$
(
w
t
-
Δ
w
)
s
=
λ
|
x
|
2
s
w
+
w
p
+
f
,
in
R
N
×
(
0
,
+
∞
)
,
w
(
x
,
t
)
=
0
,
in
R
N
×
(
-
∞
,
0
]
,
where $$N> 2s$$
N
>
2
s
, $$0<s<1$$
0
<
s
<
1
and $$0<\lambda <\Lambda _{N,s}$$
0
<
λ
<
Λ
N
,
s
, the optimal constant in the fractional Hardy–Leray inequality. In particular, we show the existence of a critical existence exponent $$p_{+}(\lambda , s)$$
p
+
(
λ
,
s
)
and of a Fujita-type exponent $$F(\lambda ,s)$$
F
(
λ
,
s
)
such that the following holds:
Let $$p>p_+(\lambda ,s)$$
p
>
p
+
(
λ
,
s
)
. Then there are not any non-negative supersolutions.
Let $$p<p_+(\lambda ,s)$$
p
<
p
+
(
λ
,
s
)
. Then there exist local solutions, while concerning global solutions we need to distinguish two cases:
Let $$ 1< p\le F(\lambda ,s)$$
1
<
p
≤
F
(
λ
,
s
)
. Here we show that a weighted norm of any positive solution blows up in finite time.
Let $$F(\lambda ,s)<p<p_+(\lambda ,s)$$
F
(
λ
,
s
)
<
p
<
p
+
(
λ
,
s
)
. Here we prove the existence of global solutions under suitable hypotheses.
Funder
Ministerio de Ciencia, Innovación y Universidades
Universidad Autónoma de Madrid
PRIN
Universidad Autonoma de Madrid
Publisher
Springer Science and Business Media LLC