A critical exponent in a quasilinear Keller–Segel system with arbitrarily fast decaying diffusivities accounting for volume-filling effects

Author:

Stinner ChristianORCID,Winkler Michael

Abstract

AbstractThe quasilinear Keller–Segel system $$\begin{aligned} \left\{ \begin{array}{l} u_t=\nabla \cdot (D(u)\nabla u) - \nabla \cdot (S(u)\nabla v), \\ v_t=\Delta v-v+u, \end{array}\right. \end{aligned}$$ u t = · ( D ( u ) u ) - · ( S ( u ) v ) , v t = Δ v - v + u , endowed with homogeneous Neumann boundary conditions is considered in a bounded domain $$\Omega \subset {\mathbb {R}}^n$$ Ω R n , $$n \ge 3$$ n 3 , with smooth boundary for sufficiently regular functions D and S satisfying $$D>0$$ D > 0 on $$[0,\infty )$$ [ 0 , ) , $$S>0$$ S > 0 on $$(0,\infty )$$ ( 0 , ) and $$S(0)=0$$ S ( 0 ) = 0 . On the one hand, it is shown that if $$\frac{S}{D}$$ S D satisfies the subcritical growth condition $$\begin{aligned} \frac{S(s)}{D(s)} \le C s^\alpha \qquad \text{ for } \text{ all } s\ge 1 \qquad \text{ with } \text{ some } \alpha < \frac{2}{n} \end{aligned}$$ S ( s ) D ( s ) C s α for all s 1 with some α < 2 n and $$C>0$$ C > 0 , then for any sufficiently regular initial data there exists a global weak energy solution such that $${ \mathrm{{ess}}} \sup _{t>0} \Vert u(t) \Vert _{L^p(\Omega )}<\infty $$ ess sup t > 0 u ( t ) L p ( Ω ) < for some $$p > \frac{2n}{n+2}$$ p > 2 n n + 2 . On the other hand, if $$\frac{S}{D}$$ S D satisfies the supercritical growth condition $$\begin{aligned} \frac{S(s)}{D(s)} \ge c s^\alpha \qquad \text{ for } \text{ all } s\ge 1 \qquad \text{ with } \text{ some } \alpha > \frac{2}{n} \end{aligned}$$ S ( s ) D ( s ) c s α for all s 1 with some α > 2 n and $$c>0$$ c > 0 , then the nonexistence of a global weak energy solution having the boundedness property stated above is shown for some initial data in the radial setting. This establishes some criticality of the value $$\alpha = \frac{2}{n}$$ α = 2 n for $$n \ge 3$$ n 3 , without any additional assumption on the behavior of D(s) as $$s \rightarrow \infty $$ s , in particular without requiring any algebraic lower bound for D. When applied to the Keller–Segel system with volume-filling effect for probability distribution functions of the type $$Q(s) = \exp (-s^\beta )$$ Q ( s ) = exp ( - s β ) , $$s \ge 0$$ s 0 , for global solvability the exponent $$\beta = \frac{n-2}{n}$$ β = n - 2 n is seen to be critical.

Funder

Technische Universität Darmstadt

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3