An asymptotic analysis for a generalized Cahn–Hilliard system with fractional operators

Author:

Colli PierluigiORCID,Gilardi Gianni,Sprekels Jürgen

Abstract

AbstractIn the recent paper “Well-posedness and regularity for a generalized fractional Cahn–Hilliard system” (Colli et al. in Atti Accad Naz Lincei Rend Lincei Mat Appl 30:437–478, 2019), the same authors have studied viscous and nonviscous Cahn–Hilliard systems of two operator equations in which nonlinearities of double-well type, like regular or logarithmic potentials, as well as nonsmooth potentials with indicator functions, were admitted. The operators appearing in the system equations are fractional powers $$A^{2r}$$ A 2 r and $$B^{2\sigma }$$ B 2 σ (in the spectral sense) of general linear operators A and B, which are densely defined, unbounded, selfadjoint, and monotone in the Hilbert space $$L^2(\Omega )$$ L 2 ( Ω ) , for some bounded and smooth domain $$\Omega \subset {{\mathbb {R}}}^3$$ Ω R 3 , and have compact resolvents. Existence, uniqueness, and regularity results have been proved in the quoted paper. Here, in the case of the viscous system, we analyze the asymptotic behavior of the solution as the parameter $$\sigma $$ σ appearing in the operator $$B^{2\sigma }$$ B 2 σ decreasingly tends to zero. We prove convergence to a phase relaxation problem at the limit, and we also investigate this limiting problem, in which an additional term containing the projection of the phase variable on the kernel of B appears.

Funder

Università degli Studi di Pavia

Publisher

Springer Science and Business Media LLC

Subject

Mathematics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3