Abstract
AbstractThe most commonly used variant of conjoint analysis is choice-based conjoint (CBC). Here, hierarchical Bayesian (HB) multinomial logit (MNL) models are widely used for preference estimation at the individual respondent level. A new and very flexible approach to address multimodal and skewed preference heterogeneity in the context of CBC is the Dirichlet Process Mixture (DPM) MNL model. The number and masses of components do not have to be predisposed like in the latent class (LC) MNL model or in the mixture-of-normals (MoN) MNL model. The aim of this Monte Carlo study is to evaluate the performance of Bayesian choice models (basic MNL, HB-MNL, MoN-MNL, LC-MNL and DPM-MNL models) under varying data conditions (especially under multimodal heterogeneity structures) using statistical criteria for parameter recovery, goodness-of-fit and predictive accuracy. The core finding from this Monte Carlo study is that the standard HB-MNL model appears to be highly robust in multimodal preference settings.
Funder
Technische Universität Clausthal
Publisher
Springer Science and Business Media LLC
Subject
Economics and Econometrics,Business and International Management
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献