Estimating the market risk premium for valuations: arithmetic or geometric mean or something in between?

Author:

Kaserer ChristophORCID

Abstract

AbstractIt is well-known that using arithmetic averages of yearly return observations leads to downward biased discount rates estimations. Well-known corrections, however, lead to upward biased results under the presence of negative serial correlation. Using a simulation analysis, we first show that a specific variant of the Cooper estimator, labelled as C4 in this paper, leads to robust estimations even under the presence of both serial correlation and heteroscedasticity. We also show that among the simple estimators, i.e. the arithmetic (AM) or geometric mean (GM) or the mean of both (MoM), the first one tends to perform best unless there is a high degree of negative serial correlation. In that case using the so-called mean of means rule would be better. Secondly, using data from Jordà et al. (Q J Econ 134(3):1225–1298, 2019) we find negative serial correlation and heteroscedasticity in market risk premia to be a widely spread phenomenon. Finally, we use this data to derive presumably least biased market risk premia estimations based on the C4 estimator. For the majority of the countries we find that these estimations are somewhere between the arithmetic and geometric average. When comparing these simple estimators among each other based on the empirical data, we find the arithmetic mean and mean of means to perform almost equally well, while the geometric mean clearly underperforms. Moreover, we found some evidence that the MoM is slightly outperforming the AM under a local CAPM perspective, while the opposite tends to be true under a global CAPM perspective. This leads us the cautious conclusion that the mean of means rule used by practitioners has some empirical rationale when there is evidence for substantial negative serial correlation.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Economics and Econometrics,Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3