1. L. G. Lobas, “Bifurcation of steady states and periodic motions of finite-dimensional dynamical systems with simple symmetry (survey),” Int. Appl. Mech., 34, No. 1, 1–24 (1998).
2. L. G. Lobas, V. V. Koval’chuk, and O. V. Bambura, “Evolution of the equilibrium states of an inverted pendulum,” Int. Appl. Mech., 43, No. 3, 344–350 (2007).
3. L. G. Lobas and L. L. Lobas, “Bifurcations, stability, and catastrophes of the equilibrium states of a double pendulum with an asymmetric follower force,” Izv. RAN, Mekh. Tverd. Tela, 4, 139–149 (2004).
4. L. G. Lobas and L. L. Lobas, “Influence of the orientation of a follower force on the stability domains of the upper equilibrium position of an inverted double pendulum,” Probl. Upravl. Inform., No. 6, 26–33 (2002).
5. L. G. Lobas and L. L. Lobas, “Modeling the dynamic behavior of a one-dimensional elastic body subjected to an asymmetric follower force,” Électr. Model., 24, No. 6, 19–31 (2002).