Author:
Leelaprachakul Tatchaphon,Kubo Atsushi,Umeno Yoshitaka
Abstract
AbstractCoarse-grained molecular dynamics simulation of polycarbonate is utilized to investigate the relationship between molecular structure (i.e., polydispersity and molecular spatial distribution) and strain-hardening and fracture behavior of polycarbonate. We find that strain-hardening modulus and chain extensibility, which are the constitutive parameters of the Eindhoven Glassy Polymer model are highly affected by spatial distribution but are insensitive to polydispersity. This is attributed to the higher rate of nonaffine deformation in the structure with a high radius of gyration. On the other hand, maximum stress at fracture is highly influenced by both spatial distribution and polydispersity due to the ability to sustain entanglements at larger strain. We suggest the phenomenological expression of maximum stress as a function of the radius of gyration, the number of entanglements, and polydispersity.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Organic Chemistry,Polymers and Plastics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献