Abstract
AbstractThis investigation focuses on the enhancement of the damping properties of Methyl Methacrylate Acrylonitrile Butadiene Styrene (MABS) through the formulation of a specific blend with a styrene-based elastomer referred to as VDT, and with the incorporation of Ethylene Butylene Styrene grafted Maleic Anhydride (SEBS-g-MAH) as a compatibilizer. In contrast to traditional investigations that primarily focus on the mechanical rigidity, thermal conductivity, and electrical conductivity of materials, this research explores the enhancement of damping properties via the process of melt compounding. Using a twin-screw extruder in a precise melt-mixing process, a multiphase polymer blend is generated by including three different weight ratios (10, 20, and 30 wt.%) of VDT. Furthermore, in order to enhance the compatibility between MABS and VDT, three different weight percentages of SEBS-g-MAH (2, 4, and 6 wt.%) have been used in the blend. Tensile testing, laser confocal microscopy, dynamic mechanical analysis (DMA) and nuclear magnetic resonance (NMR), are used to thoroughly assess the compatibility and effectiveness of the blends. The results indicate that the damping performance of the blend increases in direct proportion to the amount of VDT. Conversely, the addition of SEBS-g-MAH has a non-monotonic effect: the inclusion of 4 wt.% SEBS-g-MAH leads to the most substantial improvements in both damping performance and tensile strength, exceeding the results obtained with 2 wt.% and 6 wt.% compatibilizer. The study highlights the need for carefully choosing the right wt.% of compatibilizers when aiming to formulate polymer blends with enhanced vibration dampening properties.
Funder
Technical University of Denmark
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Organic Chemistry,Polymers and Plastics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献