Effect of UV-induced crosslink network structure on the properties of polylactic acid/polybutylene adipate terephthalate blend

Author:

Bian XueyanORCID,Fan Suju,Xia Gang,Xin John H.,Jiang Shouxiang

Abstract

AbstractOver the past few decades, biobased polylactic acid (PLA) has emerged as the most promising option to replace some of the fossil-based and nonbiodegradable polymers due to environmental concerns. In this study, a flexible polymer, polybutylene adipate terephthalate (PBAT) was blended with PLA to improve the toughness and flexibility of PLA, and the PLA/PBAT blend was further UV-induced to form crosslink structure. The results show that the flexibility and toughness of PLA could be significantly enhanced when PBAT was introduced, and the compatibility of PLA and PBAT could be enhanced by the development of a crosslink structure. Especially, the elongation at break and unnotched impact strength of ABT-UV30 (PLA/PBAT/triallyisocyanurate (TAIC) exposed to ultraviolet (UV) light for 30 min) was increased to 3.9 and 8.4 times of neat PLA. The glass transition temperature (Tg) of PLA was increased from 63.4 to 72.9 °C as the radiation duration was prolonged to 60 min. The melting point temperature of PBAT was also increased gradually until it eventually coincided with that of PLA. The thermalgravimetric analyzer thermograms show that a moderate amount of UV radiation can improve the thermal stability of the sample while an excessive amount of UV radiation can reduce the degradation temperature.

Funder

Innovation and Technology Fund of Hong Kong Special Administrative Region

Wuyi University-Hong Kong Joint Research Fund under the Hong Kong Polytechnic University and Wuyi University collaborative flamework agreement,

Wuyi University–Hong Kong/Macau Joint Research Funds

PhD scholarship provided by the Hong Kong Polytechnic University

Hong Kong Polytechnic University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3