Fill-ins with scalar curvature lower bounds and applications to positive mass theorems

Author:

McCormick StephenORCID

Abstract

AbstractGiven a constant C and a smooth closed $$(n-1)$$ ( n - 1 ) -dimensional Riemannian manifold $$(\Sigma , g)$$ ( Σ , g ) equipped with a positive function H, a natural question to ask is whether this manifold can be realised as the boundary of a smooth n-dimensional Riemannian manifold with scalar curvature bounded below by C and boundary mean curvature H. That is, does there exist a fill-in of $$(\Sigma ,g,H)$$ ( Σ , g , H ) with scalar curvature bounded below by C? We use variations of an argument due to Miao and the author (Int Math Res Not 7:2019, 2019) to explicitly construct fill-ins with different scalar curvature lower bounds, where we permit the fill-in to contain another boundary component provided it is a minimal surface. Our main focus is to illustrate the applications of such fill-ins to geometric inequalities in the context of general relativity. By filling in a manifold beyond a boundary, one is able to obtain lower bounds on the mass in terms of the boundary geometry through positive mass theorems and Penrose inequalities. We consider fill-ins with both positive and negative scalar curvature lower bounds, which from the perspective of general relativity corresponds to the sign of the cosmological constant, as well as a fill-in suitable for the inclusion of electric charge.

Funder

Lulea University of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3