Author:
Conti Diego,Rossi Federico Alberto,Segnan Dalmasso Romeo
Abstract
AbstractThe aim of this paper is to construct left-invariant Einstein pseudo-Riemannian Sasaki metrics on solvable Lie groups. We consider the class of $$\mathfrak {z}$$
z
-standard Sasaki solvable Lie algebras of dimension $$2n+3$$
2
n
+
3
, which are in one-to-one correspondence with pseudo-Kähler nilpotent Lie algebras of dimension 2n endowed with a compatible derivation, in a suitable sense. We characterize the pseudo-Kähler structures and derivations giving rise to Sasaki–Einstein metrics. We classify $$\mathfrak {z}$$
z
-standard Sasaki solvable Lie algebras of dimension $$\le 7$$
≤
7
and those whose pseudo-Kähler reduction is an abelian Lie algebra. The Einstein metrics we obtain are standard, but not of pseudo-Iwasawa type.
Funder
Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni,Italy
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Analysis
Reference35 articles.
1. Azencott, R., Wilson, E.N.: Homogeneous manifolds with negative curvature. II. Mem. Am. Math. Soc. 8(178), 102 (1976). https://doi.org/10.1090/memo/0178
2. Bär, C.: Real Killing spinors and holonomy. Commun. Math. Phys. 154(3), 509–521 (1993). https://doi.org/10.1007/BF02102106
3. Baum, H., Lärz, K., Leistner, T.: On the full holonomy group of Lorentzian manifolds. Mathematische Zeitschrift 277(3–4), 797–828 (2014). https://doi.org/10.1007/s00209-014-1279-5
4. Bérard-Bergery, L.: Sur de nouvelles variétés riemanniennes d’Einstein. In: Institut Élie Cartan, 6, volume 6 of Inst. Élie Cartan, pp. 1–60. Univ. Nancy, Nancy (1982)
5. Besse, A.L.: Einstein manifolds. Classics in Mathematics. Springer-Verlag, Berlin, 2008. Reprint of the 1987 edition
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献