Author:
Hassannezhad Asma,Siffert Anna
Abstract
AbstractWe initiate the study of the higher-order Escobar constants $$I_k(M)$$
I
k
(
M
)
, $$k\ge 3$$
k
≥
3
, on bounded planar domains M. The Escobar constants $$I_k$$
I
k
of the unit disk and a family of polygons are provided.
Funder
Westfälische Wilhelms-Universität Münster
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Analysis
Reference15 articles.
1. Bobkov, V., Parini, E.: On the higher Cheeger problem. J. Lond. Math. Soc. (2) 97(3), 575–600 (2018)
2. Brasco, L., De Philippis, G., Ruffini, B.: Spectral optimization for the Stekloff–Laplacian: the stability issue. J. Funct. Anal. 262(11), 4675–4710 (2012)
3. Buser, P.: On Cheeger’s inequality $$\lambda _{1}\ge h^{2}/4$$. In: Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., vol. XXXVI, pp. 29–77. American Mathematical Society, Providence (1980)
4. Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. Problems in analysis (Papers dedicated to Salomon Bochner, 1969), pp. 195–199 (1970)
5. Cianchi, A., Ferone, V., Nitsch, C., Trombetti, C.: Balls minimize trace constants in BV. J. Reine Angew. Math. 725, 41–61 (2017)