Author:
Morinelli Vincenzo,Neeb Karl-Hermann,Ólafsson Gestur
Abstract
AbstractWe continue our investigation of the interplay between causal structures on symmetric spaces and geometric aspects of Algebraic Quantum Field Theory. We adopt the perspective that the geometric implementation of the modular group is given by the flow generated by an Euler element of the Lie algebra (an element defining a 3-grading). Since any Euler element of a semisimple Lie algebra specifies a canonical non-compactly causal symmetric space $$M = G/H$$
M
=
G
/
H
, we turn in this paper to the geometry of this flow. Our main results concern the positivity region W of the flow (the corresponding wedge region): If G has trivial center, then W is connected, it coincides with the so-called observer domain, specified by a trajectory of the modular flow which at the same time is a causal geodesic. It can also be characterized in terms of a geometric KMS condition, and it has a natural structure of an equivariant fiber bundle over a Riemannian symmetric space that exhibits it as a real form of the crown domain of G/K. Among the tools that we need for these results are two observations of independent interest: a polar decomposition of the positivity domain and a convexity theorem for G-translates of open H-orbits in the minimal flag manifold specified by the 3-grading.
Funder
European Research Council,European Union
Deutsche Forschungsgemeinschaft
Simonsen Foundation,United States
Friedrich-Alexander-Universität Erlangen-Nürnberg
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Analysis