Taut contact hyperbolas on three-manifolds

Author:

Perrone Domenico

Abstract

AbstractIn this paper, we introduce the notion of taut contact hyperbola on three-manifolds. It is the hyperbolic analogue of the taut contact circle notion introduced by Geiges and Gonzalo (Invent. Math., 121: 147–209, 1995), (J. Differ. Geom., 46: 236–286, 1997). Then, we characterize and study this notion, exhibiting several examples, and emphasizing differences and analogies between taut contact hyperbolas and taut contact circles. Moreover, we show that taut contact hyperbolas are related to some classic notions existing in the literature. In particular, it is related to the notion of conformally Anosov flow, to the critical point condition for the Chern–Hamilton energy functional and to the generalized Finsler structures introduced by R. Bryant. Moreover, taut contact hyperbolas are related to the bi-contact metric structures introduced in D. Perrone (Ann. Global Anal. Geom., 52: 213–235, 2017).

Funder

Università del Salento

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology,Analysis

Reference27 articles.

1. Abbassi, K.M.T., Calvaruso, G.: $$g$$-natural contact metrics on unit tangent sphere bundles. Monatsh. Math. 151, 189–209 (2006)

2. Bande, G., Kotschick, D.: The geometry of symplectic pairs. Trans. Am. Math. Soc. 358(4), 1643–1655 (2005)

3. Blair, D.E.: Riemannian Geometry of Contact and Symplectic Mani-folds, 2nd edn. Birkhäuser, Boston, Basel, Berlin (2010)

4. Boyer, C.P., Galicki K.: Sasakian Geometry, Oxford Mathematical Monographs. Oxford University Press, Oxford (2008)

5. Bryant, R.: Finsler structures on the $$2$$-sphere satisfying $$K = 1$$. Contemp. Math. 196, 27–41 (1996)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Taut almost cosymplectic hyperbolas and almost bi-contact metric structures on three-manifolds;Journal of Geometry and Physics;2024-06

2. On the Blair's conjecture for contact metric three-manifolds;Tohoku Mathematical Journal;2023-12-01

3. On Anosovity, divergence and bi-contact surgery;Ergodic Theory and Dynamical Systems;2022-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3