1. Aubin, T.: Équations de type Monge–Ampère sur les variétés kählériennes compactes. Bull. Sci. Math. 102, 63–95 (1978)
2. Bando, S., Mabuchi, T., Uniqueness of Einstein Kähler metrics modulo connected group actions. In: Algebraic Geometry, Sendai, Adv. Stud. Pure Math., Mathematical Society of Japan, vol. 1987, pp. 11–40 (1985)
3. Berman, R.J.: Relative Kähler–Ricci flows and their quantization. Anal. PDE 6(1), 131–180 (2013)
4. Berman, R.J., Boucksom, S., Guedj, V., Zeriahi, A.: A variational approach to complex Monge–Ampère equations. Publ. Sci. IHES 117(2), 179–245 (2013)
5. Berman, R.J., Witt Nyström, D.: Complex optimal transport and the pluripotential theory of Kähler–Ricci solitons (2014). arXiv:1401.8264