Schwartz correspondence for real motion groups in low dimensions

Author:

Astengo Francesca,Di Blasio Bianca,Ricci Fulvio

Abstract

AbstractFor a Gelfand pair (GK) with G a Lie group of polynomial growth and K a compact subgroup, the Schwartz correspondence states that the spherical transform maps the bi-K-invariant Schwartz space $${{\mathcal {S}}}(K\backslash G/K)$$ S ( K \ G / K ) isomorphically onto the space $${{\mathcal {S}}}(\Sigma _{{\mathcal {D}}})$$ S ( Σ D ) , where $$\Sigma _{{\mathcal {D}}}$$ Σ D is an embedded copy of the Gelfand spectrum in $${{\mathbb {R}}}^\ell $$ R , canonically associated to a generating system $${{\mathcal {D}}}$$ D of G-invariant differential operators on G/K, and $${{\mathcal {S}}}(\Sigma _{{\mathcal {D}}})$$ S ( Σ D ) consists of restrictions to $$\Sigma _{{\mathcal {D}}}$$ Σ D of Schwartz functions on $${{\mathbb {R}}}^\ell $$ R . Schwartz correspondence is known to hold for a large variety of Gelfand pairs of polynomial growth. In this paper we prove that it holds for the strong Gelfand pair $$(M_n,SO_n)$$ ( M n , S O n ) with $$n=3,4$$ n = 3 , 4 . The rather trivial case $$n=2$$ n = 2 is included in previous work by the same authors.

Funder

Scuola Normale Superiore

Publisher

Springer Science and Business Media LLC

Reference24 articles.

1. Astengo, F., Di Blasio, B., Ricci, F.: Gelfand transforms of polyradial Schwartz functions on the Heisenberg group. J. Funct. Anal. 251, 772–791 (2007)

2. Astengo, F., Di Blasio, B., Ricci, F.: Gelfand pairs on the Heisenberg group and Schwartz functions. J. Funct. Anal. 256, 1565–1587 (2009)

3. Astengo, F., Di Blasio, B., Ricci, F.: On the Schwartz correspondence for Gelfand pairs of polynomial growth. Rend. Lincei Mat. Appl 32, 79–96 (2021)

4. Astengo, F., Di Blasio, B., Ricci, F.: Schwartz correspondence for the complex motion group on $${\mathbb{C}}^2$$

5. Benson, C., Jenkins, J., Ratcliff, G.: On Gelfand pairs associated with solvable Lie groups. Trans. Am. Math. Soc. 321, 85–116 (1990)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3