Abstract
AbstractWe study toric nearly Kähler manifolds, extending the work of Moroianu and Nagy. We give a description of the global geometry using multi-moment maps. We then investigate polynomial and radial solutions to the toric nearly Kähler equation.
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Analysis
Reference16 articles.
1. Atiyah, M.F.: Convexity and commuting Hamiltonians. Bull. Lond. Math. Soc. 14(1), 1–15 (1982)
2. Bär, C.: Real killing spinors and holonomy. Commun. Math. Phys. 154(3), 509–521 (1993)
3. Butruille, J.B.: Homogeneous nearly Kähler manifolds. Handbook of pseudo-Riemannian geometry and supersymmetry. IRMA Lect. Math. Theor. Phys. 16, 399–423 (2010)
4. Carrión, R.R., Salamon, S.: A survey of nearly Kähler manifolds. Gac. R. Soc. Mat. Esp. 2(1), 40–49 (1999)
5. Dixon, K.: The multi-moment maps of the nearly Kähler $${S}^ 3\times {S}^3$$. Geom. Dedicata. 200(1), 351–362 (2019)