Abstract
AbstractIn this article we introduce the p-adic cellular neural networks which are mathematical generalizations of the classical cellular neural networks (CNNs) introduced by Chua and Yang. The new networks have infinitely many cells which are organized hierarchically in rooted trees, and also they have infinitely many hidden layers. Intuitively, the p-adic CNNs occur as limits of large hierarchical discrete CNNs. More precisely, the new networks can be very well approximated by hierarchical discrete CNNs. Mathematically speaking, each of the new networks is modeled by one integro-differential equation depending on several p-adic spatial variables and the time. We study the Cauchy problem associated to these integro-differential equations and also provide numerical methods for solving them.
Funder
University of Texas Rio Grande Valley
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献