Perfect Fluid Spacetimes and Gradient Solitons

Author:

De KrishnenduORCID,De Uday ChandORCID,Syied Abdallah Abdelhameed,Turki Nasser Bin,Alsaeed Suliman

Abstract

AbstractIn this article, we investigate perfect fluid spacetimes equipped with concircular vector field. At first, in a perfect fluid spacetime admitting concircular vector field, we prove that the velocity vector field annihilates the conformal curvature tensor. In addition, in dimension 4, we show that a perfect fluid spacetime is a generalized Robertson–Walker spacetime with Einstein fibre. It is proved that if a perfect fluid spacetime furnished with concircular vector field admits a second order symmetric parallel tensor P, then either the equation of state of the perfect fluid spacetime is characterized by $$p=\frac{3-n}{n-1} \sigma $$ p = 3 - n n - 1 σ , or the tensor P is a constant multiple of the metric tensor. Finally, The perfect fluid spacetimes with concircular vector field whose Lorentzian metrics are Ricci soliton, gradient Ricci soliton, gradient Yamabe solitons, and gradient m -quasi Einstein solitons, are characterized.

Funder

Umm Al-Qura University

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ricci Solitons and String Cloud Spacetime in f(R)-gravity;International Journal of Theoretical Physics;2024-08-02

2. Generalized Bach solitons on (κ,μ)′-almost-Kenmotsu manifolds and its applications in perfect fluid spacetimes;International Journal of Geometric Methods in Modern Physics;2024-07-30

3. On pseudo--symmetric semi-Riemannian manifolds and relativistic applications;International Journal of Geometric Methods in Modern Physics;2024-07-23

4. On nearly vacuum static equations in almost coKähler manifolds with applications to spacetimes;Analysis and Mathematical Physics;2024-05-18

5. $K$-Ricci-Bourguignon Almost Solitons;International Electronic Journal of Geometry;2024-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3