Computational Analysis of the Dissipative Casson Fluid Flow Originating from a Slippery Sheet in Porous Media

Author:

Elgendi S. G.,Abbas W.,Said Ahmed A. M.,Megahed Ahmed M.,Fares Eman

Abstract

AbstractThis research paper examines the characteristics of a two-dimensional steady flow involving an incompressible viscous Casson fluid past an elastic surface that is both permeable and convectively heated, with the added feature of slip velocity. In contrast to Darcy’s Law, the current model incorporates the use of Forchheimer’s Law, which accounts for the non-linear resistance that becomes significant at higher flow velocities. The accomplishments of this study hold significant relevance, both in terms of theoretical advancements in mathematical modeling of Casson fluid flow with heat mass transfer in engineering systems, as well as in the context of practical engineering cooling applications. The study takes into account the collective influences of magnetic field, suction mechanism, convective heating, heat generation, viscous dissipation, and chemical reactions. The research incorporates the consideration of fluid properties that vary with respect to temperature or concentration, and solves the governing equations by employing similarity transformations and the shooting approach. The heat transfer process is significantly affected by the presence of heat generation and viscous dissipation. Furthermore, the study illustrates and presents the impact of various physical factors on the dimensionless temperature, velocity, and concentration. From an engineering perspective, the local Nusselt number, the skin friction, and local Sherwood number are also depicted and provided in graphical and tabular formats. In the domains of energy engineering and thermal management in particular, these results have practical relevance in improving our understanding of heat transmission in similar settings. Finally, the thorough comparison analysis reveals a significant level of alignment with the outcomes of the earlier investigations, thus validating the reliability and effectiveness of our obtained results.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3