Abstract
AbstractWith the help of the bifurcation theory of dynamical differential system and maple software, we shall devote ourselves to research travelling wave solutions and bifurcations of the (2 + 1)-dimensional dissipative long wave equation. The study of travelling wave solutions for long wave equation derives a planar Hamiltonian system. Based on phase portraits, we obtain exact explicit expressions of some bounded traveling wave solutions and some important singular traveling wave solutions, under different parametric conditions.
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference20 articles.
1. Ali, A.T.: New generalized Jacobi elliptic function rational expansion method. J. Comput. Appl. Math. 235, 4117–4127 (2011)
2. Wang, M.: Solitary wave solutions for variant Boussinesq equations. Phys. Lett. A 199, 169–172 (1995)
3. Jawad, A.J.M., Petkovic, M.D., Biswas, A.: Modifified simple equation method for nonlinear evolution equations. Appl. Math. Comput. 217, 869–877 (2010)
4. Wang, M., Li, X., Zhang, J.: The $$\frac{G^{\prime }}{G}$$-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)
5. Zayed, A.: Traveling wave solutions for higher dimensional nonlinear evolution equations using the $$\frac{G^{\prime }}{G}$$-expansion method. J. Appl. Math. Inf. 28, 383–395 (2010)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献