Modulational Instability and Discrete Localized Modes in Two Coupled Atomic Chains with Next-Nearest-Neighbor Interactions

Author:

Nfor Nkeh OmaORCID,Yamgoué Serge Bruno

Abstract

AbstractA pair of one dimensional atomic chains which are coupled via the Klein-Gordon potential is considered in this study, with each chain experiencing both nearest and next-nearest-neighbor interactions. The discrete nonlinear Schrödinger amplitude equation with next-nearest-neighbor interactions is thus derived from the out-phase equation of motion of the coupled chains. This is achieved by using the rotating wave approximations perturbation method, in which both the carrier wave and envelope are explicitly treated in the discrete regime. It is shown that the next-nearest-neighbor interactions greatly modifies the region of observation of modulational instability in the atomic chain. By exploring the discrete Hirota-Bilinear method, we obtain the discrete one-soliton solution which is localized around the origin and structurally stable because it conserves it form as time evolves. However when the atomic chain is purely subjected to a symmetric coupling potential, we observe a structurally unstable discrete excitation that changes into an up-and-down asymmetric localized modes; both in the presence and absence of next-nearest-neighbor interactions. Results of numerical simulations clearly depicts the long term evolution of these discrete nonlinear excitations, that evolve from symmetric to asymmetric localized modes in the atomic chain.

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3