Abstract
AbstractWe define a Lie algebroid structure for a class of vector bundles of rank k over a k-dimensional smooth manifold W, which are isomorphic to the tangent bundle TW. We construct an exciting example of these types of vector bundles. This example is constructed based on partial Caputo fractional derivatives. We call this vector bundle a fractional vector bundle and denote it by $${\mathscr {F}}^{\nu } {\mathscr {W}}$$
F
ν
W
.
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference23 articles.
1. Pradines, J.: Theorie de lie pour les groupoides différentiable. CR Acad. Sci. Paris 264, 245–248 (1967)
2. Atiyah, M.F.: Complex analytic connections in fibre bundles. Trans. Am. Math. Soc. 85(1), 181–207 (1957)
3. Nickerson, H.K.: On differential operators and connections. Trans. Am. Math. Soc. 99(3), 509–539 (1961)
4. Ngô, V.Q.: Sur léspace de prolongement diffêrentiable. J. Differ. Geom. 2(2), 33–40 (1968)
5. Mackenzie, K.: General theory of lie groupoids and lie algebroids, vol. 213. Cambridge University Press, Cambridge (2005)