Periodicity and pure periodicity in alternate base systems

Author:

Masáková ZuzanaORCID,Pelantová Edita

Abstract

AbstractWe study the Cantor real base numeration system which is a common generalization of two positional systems, namely the Cantor system with a sequence of integer bases and the Rényi system with one real base. We focus on the case of an alternate base $$\varvec{\mathcal {B}}$$ B given by a purely periodic sequence $$(\beta _n)_{n\ge 1}$$ ( β n ) n 1 of real numbers greater than 1. We answer an open question of Charlier et al. (J Number Theory 254:184–198, 2024, https://doi.org/10.1016/j.jnt.2023.07.008) on the set of numbers with eventually periodic $$\varvec{\mathcal {B}}$$ B -expansions. We also investigate for which bases all sufficiently small rationals have a purely periodic $$\varvec{\mathcal {B}}$$ B -expansion. We show that a necessary condition for this phenomenon is that $$\delta =\prod _{n=1}^{p}\beta _n$$ δ = n = 1 p β n (where p is the period-length of $$\varvec{\mathcal {B}}$$ B ) is a Pisot or a Salem unit. We also provide a sufficient condition. We thus generalize the results known for the Rényi numeration system, i.e. for the case when $$p=1$$ p = 1 . We provide a class of alternate bases in which all rational numbers in the interval [0, 1) have a purely periodic $$\varvec{\mathcal {B}}$$ B -expansion.

Funder

Czech Technical University in Prague

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3