Normality of the Thue–Morse function for finite fields along polynomial values

Author:

Makhul MehdiORCID,Winterhof Arne

Abstract

AbstractLet $$\varvec{F}_q$$ F q be the finite field of q elements, where $$q=p^r$$ q = p r is a power of the prime p, and $$\left( \beta _1, \beta _2, \dots , \beta _r \right) $$ β 1 , β 2 , , β r be an ordered basis of $$\varvec{F}_q$$ F q over $$\varvec{F}_p$$ F p . For $$\begin{aligned} \xi =\sum _{i=1}^rx_i\beta _i, \quad x_i\in \varvec{F}_p, \end{aligned}$$ ξ = i = 1 r x i β i , x i F p , we define the Thue–Morse or sum-of-digits function $$T(\xi )$$ T ( ξ ) on $$\varvec{F}_q$$ F q by $$\begin{aligned} T(\xi )=\sum _{i=1}^{r}x_i. \end{aligned}$$ T ( ξ ) = i = 1 r x i . For a given pattern length s with $$1\le s\le q$$ 1 s q , a vector $$\varvec{\alpha }=(\alpha _1,\ldots ,\alpha _s)\in \varvec{F}_q^s$$ α = ( α 1 , , α s ) F q s with different coordinates $$\alpha _{j_1}\not = \alpha _{j_2}$$ α j 1 α j 2 , $$1\le j_1<j_2\le s$$ 1 j 1 < j 2 s , a polynomial $$f(X)\in \varvec{F}_q[X]$$ f ( X ) F q [ X ] of degree d and a vector $$\mathbf{c} =(c_1,\ldots ,c_s)\in \varvec{F}_p^s$$ c = ( c 1 , , c s ) F p s we put $$\begin{aligned} \mathcal{T}(\mathbf{c} ,\varvec{\alpha },f)=\{\xi \in \varvec{F}_q : T(f(\xi +\alpha _i))=c_i,~i=1,\ldots ,s\}. \end{aligned}$$ T ( c , α , f ) = { ξ F q : T ( f ( ξ + α i ) ) = c i , i = 1 , , s } . In this paper we will see that under some natural conditions, the size of $$\mathcal{T}(\mathbf{c} ,\varvec{\alpha },f)$$ T ( c , α , f ) is asymptotically the same for all $$\mathbf{c} $$ c and $$\varvec{\alpha }$$ α in both cases, $$p\rightarrow \infty $$ p and $$r\rightarrow \infty $$ r , respectively. More precisely, we have $$\begin{aligned} \left||\mathcal{T}(\mathbf{c} , \varvec{\alpha }, f) |- p^{r-s} \right|\le (d-1)q^{1/2} \end{aligned}$$ | T ( c , α , f ) | - p r - s ( d - 1 ) q 1 / 2 under certain conditions on dq and s. For monomials of large degree we improve this bound as well as we find conditions on dq and s for which this bound is not true. In particular, if $$1\le d<p$$ 1 d < p we have the dichotomy that the bound is valid if $$s\le d$$ s d and for $$s\ge d+1$$ s d + 1 there are vectors $$\mathbf{c} $$ c and $$\varvec{\alpha }$$ α with $$\mathcal{T}(\mathbf{c} ,\varvec{\alpha },f)=\emptyset $$ T ( c , α , f ) = so that the bound fails for sufficiently large r. The case $$s=1$$ s = 1 was studied before by Dartyge and Sárközy.

Funder

FWF

Publisher

Springer Science and Business Media LLC

Subject

Algebra and Number Theory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Character sums over sparse elements of finite fields;Bulletin of the London Mathematical Society;2024-02-27

2. Pseudorandom sequences derived from automatic sequences;Cryptography and Communications;2022-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3