Abstract
AbstractLet $$\varvec{F}_q$$
F
q
be the finite field of q elements, where $$q=p^r$$
q
=
p
r
is a power of the prime p, and $$\left( \beta _1, \beta _2, \dots , \beta _r \right) $$
β
1
,
β
2
,
⋯
,
β
r
be an ordered basis of $$\varvec{F}_q$$
F
q
over $$\varvec{F}_p$$
F
p
. For $$\begin{aligned} \xi =\sum _{i=1}^rx_i\beta _i, \quad x_i\in \varvec{F}_p, \end{aligned}$$
ξ
=
∑
i
=
1
r
x
i
β
i
,
x
i
∈
F
p
,
we define the Thue–Morse or sum-of-digits function $$T(\xi )$$
T
(
ξ
)
on $$\varvec{F}_q$$
F
q
by $$\begin{aligned} T(\xi )=\sum _{i=1}^{r}x_i. \end{aligned}$$
T
(
ξ
)
=
∑
i
=
1
r
x
i
.
For a given pattern length s with $$1\le s\le q$$
1
≤
s
≤
q
, a vector $$\varvec{\alpha }=(\alpha _1,\ldots ,\alpha _s)\in \varvec{F}_q^s$$
α
=
(
α
1
,
…
,
α
s
)
∈
F
q
s
with different coordinates $$\alpha _{j_1}\not = \alpha _{j_2}$$
α
j
1
≠
α
j
2
, $$1\le j_1<j_2\le s$$
1
≤
j
1
<
j
2
≤
s
, a polynomial $$f(X)\in \varvec{F}_q[X]$$
f
(
X
)
∈
F
q
[
X
]
of degree d and a vector $$\mathbf{c} =(c_1,\ldots ,c_s)\in \varvec{F}_p^s$$
c
=
(
c
1
,
…
,
c
s
)
∈
F
p
s
we put $$\begin{aligned} \mathcal{T}(\mathbf{c} ,\varvec{\alpha },f)=\{\xi \in \varvec{F}_q : T(f(\xi +\alpha _i))=c_i,~i=1,\ldots ,s\}. \end{aligned}$$
T
(
c
,
α
,
f
)
=
{
ξ
∈
F
q
:
T
(
f
(
ξ
+
α
i
)
)
=
c
i
,
i
=
1
,
…
,
s
}
.
In this paper we will see that under some natural conditions, the size of $$\mathcal{T}(\mathbf{c} ,\varvec{\alpha },f)$$
T
(
c
,
α
,
f
)
is asymptotically the same for all $$\mathbf{c} $$
c
and $$\varvec{\alpha }$$
α
in both cases, $$p\rightarrow \infty $$
p
→
∞
and $$r\rightarrow \infty $$
r
→
∞
, respectively. More precisely, we have $$\begin{aligned} \left||\mathcal{T}(\mathbf{c} , \varvec{\alpha }, f) |- p^{r-s} \right|\le (d-1)q^{1/2} \end{aligned}$$
|
T
(
c
,
α
,
f
)
|
-
p
r
-
s
≤
(
d
-
1
)
q
1
/
2
under certain conditions on d, q and s. For monomials of large degree we improve this bound as well as we find conditions on d, q and s for which this bound is not true. In particular, if $$1\le d<p$$
1
≤
d
<
p
we have the dichotomy that the bound is valid if $$s\le d$$
s
≤
d
and for $$s\ge d+1$$
s
≥
d
+
1
there are vectors $$\mathbf{c} $$
c
and $$\varvec{\alpha }$$
α
with $$\mathcal{T}(\mathbf{c} ,\varvec{\alpha },f)=\emptyset $$
T
(
c
,
α
,
f
)
=
∅
so that the bound fails for sufficiently large r. The case $$s=1$$
s
=
1
was studied before by Dartyge and Sárközy.
Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献