A Hecke-equivariant decomposition of spaces of Drinfeld cusp forms via representation theory, and an investigation of its subfactors

Author:

Böckle GebhardORCID,Gräf Peter MathiasORCID,Perkins Rudolph

Abstract

AbstractThere are various reasons why a naive analog of the Maeda conjecture has to fail for Drinfeld cusp forms. Focussing on double cusp forms and using the link found by Teitelbaum between Drinfeld cusp forms and certain harmonic cochains, we observed a while ago that all obvious counterexamples disappear for certain Hecke-invariant subquotients of spaces of Drinfeld cusp forms of fixed weight, which can be defined naturally via representation theory. The present work extends Teitelbaum’s isomorphism to an adelic setting and to arbitrary levels, it makes precise the impact of representation theory, it relates certain intertwining maps to hyperderivatives of Bosser-Pellarin, and it begins an investigation into dimension formulas for the subquotients mentioned above. We end with some numerical data for $$A={\mathbb {F}}_3[t]$$ A = F 3 [ t ] that displays a new obstruction to an analog of a Maeda conjecture by discovering a conjecturally infinite supply of $${\mathbb {F}}_3(t)$$ F 3 ( t ) -rational eigenforms with combinatorially given (conjectural) Hecke eigenvalues at the prime t.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Algebra and Number Theory

Reference25 articles.

1. Böckle, G.: An Eichler-Shimura isomorphism over function fields between Drinfeld modular forms and cohomology classes of crystals. www.iwr.uni-heidelberg.de/~Gebhard.Boeckle/publications/ (2002)

2. Bonnafé, C.: Representations of $${\rm SL}_2({\mathbb{F}}_q)$$. Algebra and Applications, vol. 13. Springer, London (2011)

3. Bosser, V., Pellarin, F.: Hyperdifferential properties of Drinfeld quasi-modular forms. Int. Math. Res. Not. IMRN 11, 56 (2008)

4. Bosser, V., Pellarin, F.: On certain families of Drinfeld quasi-modular forms. J. Number Theory 129(12), 2952–2990 (2009)

5. Carbone, L., Cobbs, L., Murray, S.H.: Fundamental domains for congruence subgroups of $${\rm SL}_2$$ in positive characteristic. J. Algebra 325, 431–439 (2011)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3